openwrt

OpenWrt - poWquty (poWer quality): Computing and providing power quality information on OpenWrt routers.

Dear Freifunkers,

Please allow me to introduce the poWquty Project within Google Summer of Code 2016 at Freifunk.

The big picture behind this project relates to the energy production and consumption. Sustainable energy production and consumption are crucial for a prospering life on earth. The importance of energy led many theorists to even define the level of civilization by its energy profile. With the renewable energies shift the energy production paradigm from centralized to decentralized energy production which poses one of the next big challenges, which will influence the energy production in the future years.

From the big picture we move to the concrete case, increasingly faced when dealing with renewable energies: monitoring and control.
The emerging smart grids include an inherent need for communication for monitoring and control purposes in a more and more dynamic environment. One of the major challenges is monitoring the power quality parameters in a decentralized manner. In such case, decentralized information need to be retrieved and transported with the lowest latency possible. One way to solve this challenge could be to install expensive infrastructure to each point. The better way is to use wireless mesh infrastructure that could also serve this purpose.

Here where Freifunk comes in: The Freifunk mesh network is an outstanding example for a decentralized infrastructure that could be augmented with grid related functionalities to cope with future energy challenges. In order to use wireless mesh networks such as Freifunk for energy monitoring, we could use extra hardware that does the power measurements and use the wireless networks solely for transporting the information. The drawback of this is the need to install separate hardware. But, since all routers run on power, we could integrate the measurements into the router, which is the main goal of this project: to enable power quality measurements on OpenWrt.

Here is the initial plan how to do this. First we need to retrieve voltage samples from the power grid. For the beginning we will rely on an oscilloscope device that delivers the real time samples over a USB interface. This way voltage samples from the electric socket are retrieved at the router. With these voltage samples we can go ahead and calculate the power quality parameters, using moving window algorithms, fourrier transform, and z-transform to get the phase angle, the effective power, the frequency, and the harmonics. This calculation should be time, and memory efficient since it has to run on the OpenWrt embedded devices. Once these values are calculated we need to think about how we want to make them available for retrieval over IP networks.

Now we come to the Code: The goal of the project is to create an OpenWrt package which ensures three functionalities:
1-    Retrieving sample data from the measurement device
2-    Calculating power quality parameters form the retrieved samples
3-    Provisioning of the calculated parameters for retrieval

This project is intended to strengthen the role of open software in the uprising smart grids by providing some essential functionalities, communication devices need to have in the context of smart grids, especially in regard to the future role of the home routers in the future energy solutions.

More updates on this will follow in the next weeks.

Cheers,

Neez

GSoC: A new configuration system for OpenWrt/LEDE

Hi,
I'm Matthias (aka NeoRaider), and this year, I'll participate in the Google Summer of Code for the Freifunk project.

The goal of my project is to develop an alternative to the UCI configuration system, as UCI has a number of issues that make it cumbersome to use in some situations.

One of the basic issues of UCI that affects many Freifunk (or generally community mesh) firmwares is the upgrade behaviour. Mesh firmwares usually contain elaborate default configurations, which set up network interfaces and other things to allow participating in a mesh without deep knowledge of the setup.

But this setup needs to change from time to time, as the firmware is upgraded. In the Gluon firmware framework, we usually solve this by providing upgrade scripts which modify the configuration after flashing the firmware. Writing these script is often a tedious task, and the scripts easily break when the configuration differs too much from the expected one.

But the ability to change the configuration is important for many Freifunk users: They want to change the role of ethernet ports, WLAN settings, and a lot more. But UCI doesn't provide information how a setting was changed: if a script encounters an unexpected value, it can't find out if it is an old default value, or was changed by the user. This often leads to a difficult choice for the script author: either to overwrite the value unconditionally, maybe disregarding voluntary configuration changes, or not to overwrite it, rendering communities unable to change certain configuration during upgrades.

My project aims at solving this by saving the user configuration independently of the defaults provided by packages. This way, a package upgrade can change the default values, but explicit user configuration will not be affected.

Another issue is that the upgrade scripts are usually part of the packages that bring the configuration. Removing a package will leave the configuration behind, which is usually a good thing (for users which know about this and may be interested in the the old config), but for mostly-automatic upgrades, old configuration may accumulate, which can quickly become problematic on devices with very limited flash.

I plan to fix this by basing the new configuration system on schema definitions, which specify which configuration options and values are valid. The schema will probably be based on JSON, as there are already lots of existing systems for defining JSON schemas, which may be used for my project or at least serve as inspiration. This will also finally provide real datatypes for the configuration and make things more consistent (finally no more 1/true/on/yes/0/false/off/no booleans!). If we want too keep the package/section/option organization of UCI, or rather allow defining schemas for any JSON structure, is still a subject of debate.

Instead of going into detail even more in this post, I'll provide a link to my Gitlab project: https://gitlab.com/neoraider/ece

Design documents, examples for configuration and schemas, and first code will start to appear there very soon Laughing

DynaPoint - A dynamic access point validator and creator

Hi everybody,

 

I am Tobias, a Computer Science student at the TU-Berlin. I am glad to have the opportunity to participate at GSoC for Freifunk this year.

 

My project aims at making the handling with access points in OpenWrt/LEDE easier. The goal is defined as follows: Find an easily configurable solution (with reasonable defaults) for making the wireless access SSID in OpenWrt/LEDE dependent on a set of network conditions.

 

What does that mean? Consider the following example. You have a wireless access point with SSID "Freifunk". Suddenly for whatever reason the AP looses Internet connectivity without anyone noticing it. When users now connect to this AP, expecting a working Internet connection, they get frustrated, because they can't check their emails or surf the Internet.

 

With DynaPoint I want to develop a daemon, which regularly monitors the Internet connectivity. When it's lost, the SSID will automatically be changed. In this example it could be changed to "Freifunk-offline". When Internet connectivity is re-established, the SSID would automatically be changed back to "Freifunk".

This way users as well as admins get informed about the state of an access point just by looking at the SSID.

 

To verify Internet connectivity the first obvious step would be to do a ping. For this purpose there already exists a package called pingcheck, which I am planning to use. Further steps could include DNS-Queries and HTTP-Downloads.

 

Speaking about easy configuration and reasonable defaults, I want to require as little configuration steps as possible, but also provide enough configuration options to be adjustable to different kind of setups. Ideally the configuration will also be possible via the LuCI web interface.

 

Until next time,

 

Tobias

SWOON: Simultaneous Wireless Organic Optimization within Nodewatcher

Hi everyone,

I will contribute to one of the Freifunk projects; nodewatcher, via Google Summer of Code this summer and I wanted to keep you updated on my progress as well as exchange thoughts about my ideas.

First of all, nodewatcher is an open source, modular community oriented platform used for network planning, node deployment, node monitoring and maintenance. nodewatcher was initially developed to be primarily used by the wlan slovenija project. With 1336 nodes, it's really successful and a great example for community networks. As nodewatcher gets deployed elsewhere with even more nodes, it's natural to ask ourselves if we can be smarter about allocating spectrum to our wireless nodes - these nodes are mostly inexpensive wireless routers but it's natural to extend the meaning of the term to dedicated wireless access points (i.e. Unifi AP).

The theoretical foundation for this problem is fascinating by itself: Each node has a different amount of noise in each channel (the 2.4GHz band allows 3 non-overlapping channels where each channel is 20MHz wide) and each node wants to maximize its SNR (signal-to-noise ratio). I will term this as the greedy approach, which is already used in enterprise level devices. However, in an urban setting, nodes are close enough to each other for their signal to act as noise to other nodes. The greedy approach is no longer optimal as it bears a high price of anarchy. Instead, our goal is now to maximize the sum of channel capacities (under a power constraint). I will have to devise an algorithm to solve this problem and the algorithm does not seem trivial since the number of combinations is increasing exponentially with the number of nodes in the system. Even with only 10 nodes, we haveover 59000 possible allocations on 2.4GHz band and over 95 trillion on the 5GHz band.

Traditional networking literature tackles this optimization problem with Lagrange multipliers. An alternative is to look at approximate graph coloring schemes and compute chromatic numbers. I hope to experiment across various settings and approaches.
Over the course of the project, I hope to experiment with a real network which consists of at least 10 nodes and measure the improvements. One exciting thing about real life experiments is that nodewatcher was mostly used inside wlan slovenija's network and I get to run it independently! This will probably allow me to fix some bugs on the way and contribute to nodewatcher in this aspect as well.

The algorithm will initally be developed as a nodewatcher module, but I hope to eventually port it to openwrt (possibly after the summer ends). The main difficulty is that nodewatcher can act as a central level planner, whereas the openwrt scenario requires negotiation among nodes. So it's harder to convince a node to decrease its TX power to benefit other users. But imagine a network where nodes can communicate and achieve a socially optimal point of spectrum allocation! A glorious future awaits us.

GSoC 2014 Final - OpenWrt: IEEE 802.1ad VLAN support

Hi all!

Because I have worked very hard in the first part of GSoC, the implementation was almost done already for mid term, in the second part I have been mostly testing the code, and taking advantage of it in a lot of setups :)

The GSoC experience have been very formative to me and I would like to repeat it next year either as student or mentor :)

Moreover I'll suggests to apply to GSoC to a lot of friends!

Many thanks to Freifunk to chose my proposal I hope you will take advantage of 802.1ad too :)

Cheers!

GSoC 2014 Updates - OpenWrt: IEEE 802.1ad VLAN support

As promised I have been working hard on the proposal. Thanks to community help I have already almost completed all deliverables and in fact some patches got merged in netifd [10-13] and OpenWrt [15] already and development branch of libre-mesh is already taking advantage of them [14] :)
 
Working on this project gave me more conviction that community collaboration is fundamental, community helped me to understand the problem and what to modify to fix it, moreover someone went beyond that submitting patches too [16-17] !
 
Here it goes a small resume of how I did it:
    - Talk multiple time with OpenWRT [0] folks via retroshare openwrt lobby, they gave me some indication on what I had to do
    - Get netifd code [18]
    - Create a vlandev netifd device
    - Implement routines to add and remove 802.1ad/802.1q vlan in Linux via netlink
    - Talk with OpenWRT folks for quality check and patch merging
    - Code cleaning and testing
    - Patches get merged in netifd and OpenWRT
 
Now who need to use 802.1ad is not unfortunately constrained to private software anymore, because it is now supported in OpenWRT [0] :D
 
More updates [6] soon, and don’t forget the best is yet to come! 
 

GSoC2014 - BGP/Bird integration with OpenWRT and QMP

This year, the Google Summer of Code and FreiFunk have given to Guifi.net and QMP communities the opportunity to develope a project in this event. This project is: BGP/Bird integration with OpenWRT and QMP.

 

A brief description of the project

Most of the community networks run dynamic routing protocols (OLSR, BMX6, BATMAN-ADV, etc.) with non-dynamic ones (BGP, OSPF, etc.). Guifi.net (BGP) and QMP (BMX6) are a scenario where this collision of metrics and routes happens. 

Furthermore, these communities are using Quagga for the BGP routing, which is a complex and oversized tool for the type of nodes that will work with it. For these kind of nodes, Bird is a really lightweight BGP daemon that is still not well supported to be used easily by the community (it does not have an easy and graphical configuration system yet).

 

This project will contribute with:

1st Block: Adapting Bird to fit into QMP firmware. (1 month)

  • Bird daemon improvements (3 weeks)
    • Give to Bird integration with OpenWRT: Add support for UCI configuration. Thus, will ease the configuring process and become closer to non-expert users.
    • Improve Bird UCI configuration adding LUCI support (web graphical interface). Adding a graphical user-friendly interface and the necessary tools to automate hardest processes of the configuration, non-expert community users could find this daemon as an easy to use routing tool.
  • Adapt Bird daemon to QMP (1 week)
    • Once working on OpenWRT and with an easy ‘to put on work’ configuration, add integration with the QMP firmware owing to replace Quagga’s routing functions in frontier nodes of the QMP network.

 

2n Block: Automate the translations of routes and metrics between a non-dynamic routing protocol and a dynamic one. (~2 months)

  • Creation of a routes and metrics exchange system (7 weeks)
    • Study and build an exchange system for metrics and routes between BGP (from Guifi.net) and BMX6 (from QMP).
    • Test and debug this solution in the real scenario (Guifi.net-QMP)

 

3rd Block: Project basic feedback and documentation (1 week)

  • Documentation, user support&feedback and results presentation.

 

About the author

I am Eloi Carbó, a Computer Science student specialized in Information Technology in the UPC of Barcelona. Currently I am working on my Final Degree dissertation: UPC CN-A testbed mesh network deployment, monitoring and validation. Using the Wibed Platform developed by the CONFINE Project [Link: https://wiki.confine-project.eu/wibed:start].

 

About the project collaborators

The project tutors are Roger Baig (fundació Guifi.net) and Axel Neumann (Freifunk and BMX6 support) and the special collaboration of Pau Escrich (fundació Guifi.net and QMP project).

OpenWrt: IEEE 802.1ad VLAN support

This is my first time as GSoC student and I am very glad to have been accepted in the Freifunk organization. I am a computer science student, therefore my life should be full of this kind of experiences, but unfortunately there are few possibilities to develop interesting applications and get a decent wage, due to the ever-increasing cuts in the sphere of research. The university offers several tedious unpaid apprenticeship with few learning value, generally works that machines are supposed to do instead of human beings. Moreover, the state of uncertainty that austerity politics ail people, kills their creativity. The GSoC wage, in addition to community help and fertile environment, will allow me to have some tranquillity and time to devote myself to think on creative ideas and implementing a long awaited feature in OpenWRT.

I have been hacktive in wireless community networks since years and I have seen a lot of situations where the use of the IEEE 802.1ad standard would make a drastic difference. Many times unlucky people were forced to use proprietary software because of the need for 802.1ad. An open implementation of this standard was not available in the past and only recently has it been implemented in the Linux kernel. What is still missing is an UCI standard way to configure 802.1ad interfaces, so at the moment this feature is still not usable by OpenWRT users.

OpenWRT is a Linux distribution primarly designed for embedded devices (e.g. routers) and we currently use it on our community network devices because it is the most suitable for our needs. Furthermore, the OpenWRT community and community networks have wide intersections both in thinking and in participants.

First of all I need to understand better the netifd (OpenWRT network manager) internals, then in agreement with OpenWRT developers I am going to define an 802.1ad UCI device configuration schema and implement its management inside netifd. I am going also to provide a new syntax for 802.1q devices but keeping retrocompatibility, then I am going to update the UCI documentation, do serveral testing and discuss with OpenWRT developers about how to merge the new code in the official repository.

I have already contacted OpenWRT developers and my mentors who seem pleased to help me, I will work hard on this project and I would like to see OpenWRT 802.1ad support rock-solid as soon as possible :) I will push my day by day work on a netifd clone repository on Gitorious, so keep watching it.

More updates soon, and don’t forget the best is yet to come!

Syndicate content